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One of the trends in the theory of plasticity in recent decades has been an increasing 
interest in geometrically nonlinear problems. The central problem in the geometrically 
nonlinear theory of plasticity (NTP) remains establishment of the governing relations. In 
most investigations (see [1-5], for-example) devoted to the construction of governing rela- 
tions of the NTP, this goal is approached through the use of equations of the theory of 
plastic flow based on the gradient principle and some strain-hardening law (kinematic, isotro- 
pic, or a combination of the two). To satisfy the requirement of objectivity in the flow 
theory equations, substantial derivatives of measures of the stress and strain states are 
replaced by certain objective derivatives of these measures. However, as is known [6, 7, 
etc. ], the above-noted relations reflect deformations along paths of small curvature with an 
acceptable degree of accuracy. Here we examine one possible variant of generalization of the 
theory of elastoplastic strains developed by A. A. ll'yushin and associated special theories 
of plasticity suitable for describing deformation over complex paths. All of the theories 
are examined for the case of large plastic strains. 

I. Certain Kinematic Relations. We will mainly use tensorial (symbolic) notation for 
the relations. The position vectors of a material particle with the Lagrangian coordinates 
(~i, fz, ~a) in the reference (at the moment of time to) configuration ~0 and the actual 

configuration ~f~ are designated respectively as R0(~) and r(~ i, t), while the gradients of the 
o 

position in ~0 and d~ are designated as VR 0 and vr. 

We will henceforth employ polar expansion of the position gradient [8, 9] 
o 

V r = U . R  : R - V ,  ( 1 . 1 )  
3 3 o { o  

where U = ~ Uippl, V= ~ V~pip~ are the left and right tensors of the strains, respectively; 
i=l i=I 

Pi=p i and ~=~i are their principal vectors; 

~  R T ^ ~  R = p~p*, = P iP  ( 1 . 2 )  

are the rotation tensor and its transport. As the strain measures, we take the Hencky strain 
3 3 

tensors ~[ =Eln ~176  Uippi, H= ~lnVipipi, as the measure of the stress state, we take the Cauchy 
i = l  i = l  

stress tensor a [8, 9]. 

Along with measures of the stress and strain states, the governing relations of the NTP 
also make use of measures of the rates of their change. For example, the substantial deriva- 

tives a and H cannot be used as rate measures because they cannot be further differen- 
tiated [9, i0]. The selection of objective (indifferent) measures of the rates of change in 
the stresses and strains requires analysis of their geometric sense and is connected with the 
method used to expand the motion into quasirigid ("rigid") and deformational motions. Such 
an expansion can be accomplished by many different methods. As was shown in [I0], the types 
of indifferent derivatives used in the NTP are the relative rates Of change of the respective 
tensors in the chosen moving (and, generally speaking, deformable) coordinate system. Here, 
it is usually assumed that the motion of the latter describes quasirigid motion. In the 
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present study, we employ a polar expansion of the position gradient (i.I) to distinguish 

quasirigid motion. 

We will examine a material particle M with a small neighborhood in which the stress- 
strain state (SSS) can be considered uniform. For simplicity, we make the Cartesian coor- 

dinate system OxlxZx 3 with the orthonormal basis ~k~ = k i, i = 1,3. Together with the Lagrangian 
systems O~i~ 3 with the bases e~ (in ~0) and e~ (in 3~i), we introduce the moving local 
coordinate system M ~  s. The latter system will also be assumed to be an orthogonal Car- 
tesian system, with the basis ql = qi. In the reference configuration 3~0 we will assume 
that the vectors of the basis qi coincide with k~, q~l~=~q~ = k~, i = t, 3. 

In accordance with the method being employed to expand the motion of a particle with a 
neighborhood, the quasirigid motion of the particle is described by the motion of the system 
Mflf2f 3. The orientation of the latter relative to the system of reference at each moment of 

time is determined by the rotation tensor R: 

q~=R r . q ~ = q ~ . R = k r R ,  i = l ,  3. (1.3) 

It is not hard to see from Eqs. 
different from (1.2): 

(1.3) that the rotation tensor can be determined in a manner 

o ~ R T = R = qiq, qiq ~ (1.4) 

In (1.2), each vector entering into the dyad product changes its orientation in the general 
case of motion, while in (1.4) the vector q~ is fixed in relation to the material fibers in 
~0 At each moment of time, the motion of the system M[i~2~ 3 can be represented by an in- 
finitesimal translational displacement at the velocity v M and an infinitesimal rotation with 

an angular velocity corresponding to the spin tensor ~ [9]: 

Q = RT.R = -RT.R = __~. (1.5) 

With allowance for the above remarks, it is not hard to show from (1.4) and (1.5) that ~ = 
qiq i, so that 

qi : ~'q~" (1.6) 

The choice of the moving coordinate system corresponding to quasirigid motion unam- 
biguously determines the deformational motion:'by deformational motion, we mean the motion of 
the medium relative to the moving system that is introduced. Here, the measures of the rates 
of change in the stress and strain states are the relative rates of change in the measures of 
these states. Given the method of motion expansion being used an the present investigation, 
the relative rates of change of a and ~ are the so-called Zaremby derivatives [ii]: 

a z = a ~- g.~ -- ~.~; (1.7) 

o ~ o 

Assuming that the eigenvectors Pi, Pi of the tensors H, H are continuous vector-func- 
tions of time with continuous first derivatives, we can determine the set of three orthonor- 

o 

malized vectors Pi = limp~ = limp~. The vectors pi for each deformation process are fixed in 
~tO ~ 0  

relation to the material fibers in ~0 and, as can shown, are the principal vectors of the 
strain-rate tensor D at the moment t o . Then the rotation tensors R U and R v of the eigenvee- 
tore R u and R V for their movement from the initial to the current position can be determined 
by the relations 

o h o 

R u = p ~ p ,  R~=pkp  h, n v = p $  ~, R~=php ~, (1.9) 

We express the spins 

here 

so that 

R = R ~ - R v ,  R ~ = R ~ . R u .  
o 

~u and f~v of the triads p~ and p~. in the form 

~ 

o o o -~" 

P~ = ~ u ' P ~  = - - p i ' ~ u ,  Pi = ~ v " P i  = - - - P i ' ~ v .  

(i0) 

(i.ii) 

(1.12) 
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Using (1.5), (I.i0), and (I.ii) 

With allowance for (1.12), we use Eq. 
through eigenvalues and eigenvectors to obtain 

3 o oio o o 
= ~ Hip  Pi + f ~ u . H - - H . f J v ;  

i = 3  

E + m -  

By virtue of the equalities ~T ~ V~ "~ t ,  ~ ~ ~, 3, we have H~ = Hi ~ t ,  i= t,3---, 

(assuming 
c- 

between 

(1.13) 

(1.8) and representation of the tensors H, 

(i.i4) 

(i.i5) 

so that 

Hi, Hi ~ CI([0, oe)) ~i = I,--3), Hi = H~ ~t, i = i,--3. We also write the obvious relations 

and /I : 

I~I = R.fi .R r, I / =  RT.I~I .R -~t ,  (1.16) 

from which it follows in particular that It(H) = It(H) ~#t, where Ii(') denotes the first in- 
variant of the corresponding tensor�9 For practical application, it is convenient to use the 
expression of ~z presented in [I0]. Here, this quantity is expressed through the current 
parameters of the deformation process (velocity gradient, eigenvalues, and eigenvectors U and 
V). The expression In [i0] is presented below together with the expression for the spin fl: 

3 

Hz = Dq- ~ I n  --i (pi. D.?k) ph~ ; 

t k = i  L v~---"-"-"-"-"~Th ( ~ "  D.ph) ~h~i , ( 1 . 1 8 )  

where W is the rotation tensor; D is the strain-rate tensor. 

Note I. In the strain theory of the mechanics of deformable solids, there are strain 
measures having the same eigenvalues but different eigenvector triads (Pi and ~ ), which 
are transformed using the rotation tensor R. Such measures (we will refer to them as as- 
sociated measures) include the left U and right V strain tensors, the logarithmic measures 
and H the Cauchy-Green measure G and Finger measure ~-i = F , and the inverse Cauchy- 

Green measure G and Almansi measure G. Designating the first measure in each pair as A, 
and the second as A, it is not hard to show that a relation of the type (1.16) is valid for 
each pair: 

i = , R . ~ . n r ,  X = R T . A . R .  (1 .16 ' )  

Using the rule of tensor transformation with rigid motion, we can state the following: 

if the tensor A is invariant relative to rigid motion [I0], then the tensor ~ is indif- 
ferent, and conversely. 

Note 2. The orthogonal tensor R accompanying deformation was used by V. I. Levitas (see 
[12], for example) to construct governing relations, where its application was based on other 
considerations: it was assumed that the relationship between the Cauchy stress tensor, its 
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material derivative, and the strain-rate tensor was known in the case of deformation "without 
rotation." Then a rigid displacement was superimposed on this motion. Here, the rigid 
rotation was assumed to have corresponded to the rotation tensor, which in turn leads to 
corresponding transformations of the initial equations to a form satisfying the requirement 
of indifference. 

2. Representation of the Loading Process. One of the most important concepts in the 
theory of elastoplastic processes is that of the representation of the loading process [13]. 
In the case of small strains (and rotations), the strain path and the stress vector are 
determined by the components of the corresponding deviators in the basis of the system of 
reference. However, when indifferent strain and stress measures are used, the image of the 
loading process constructed in this manner is indifferent (and is noninvariant relative to 
rigid motion) [14]. This makes similar representation of the loading process unsuitable for 
the NTP. 

One possible method of constructing an image of the process is to use components of the 
stress and strain measures, invariant to rigid motion, in the basis of the Lagrangian coor- 
dinate system of reference. However, the well-known stress tensors [8, 9] defined in terms 
of J~0 do not have as clear a physical significance as the Cauchy stress tensor a. This 
naturally creates problems in interpreting the necessary experimental data. Also, the first 
invariants of these stress tensors (such as the second Piola-Kirchhoff tensor) do not charac- 
terize the mean stress, which nullifies the physical significance of expansion of stress 
tensors into spherical and deviatoric parts. It should be noted that the two remaining 
invariants of the above-noted stress tensors also do not have the significance of the cor- 
responding invariants of the tensor ~ [13]. 

In connection with this, here we propose another method of constructing the strain path 
and stress vector. This method makes use of the Hencky strain tensor H. and the Cauchy 
stress tensor a. The components of these tensors, in terms of the actual configuration J~ 
have a distinct physical meaning. 

It is customary [13] to introduce vector spaces for the strains B ~ and stresses E 5. 
However, the vectors of the strains b and stresses Z are found from components of the strain 

I 
II(H)E and stress deviator S=o-- ~--[I(~)E in the basis qi of the moving deviator h = H---~ 

coordinate system M~1~if 3. We will show that the stress vector is indifferent. To do this, 
it is sufficient to prove that the components of the tensor a do not change in the basis ql 
with the superposition of an arbitrary rigid motion. 

We will examine the motions r(~ i, t) and r~(~ ~, t), which differ by a rigid displacement 

r '  (~i, t )  = r~ (t) + [ r  ( ~ ,  t )  - -  r o ( t ) ] . O ( t ) .  ( 2 . 1 )  

In this case, the following relations are valid 

~ ( r  ~) = O r .  ~(r) .  O; 

R~(r ')  = R ( r ) . O ,  ( R ' ( r ' ) )  T = 0 r .  (R(r))  ~. 

r ~ . 

( 2 . 2 )  

( 2 . 3 )  

We will assume that the reference configuration ~7~ 0 is identical for the motions r and 
Then 

qi~  = q~(r), i =  1,--'3. ( 2 . 4 )  

We recall that the vectors qi ~ are directed along mutually perpendicular fibers fixed in ~0- 
r 

Then the components of the tensor a in the bases q~(r I and q~(r) are determined by the 
relations 

e t . ~ j  r 0 oij = q i -~  = qi " ( R " o " R ' T ) ' q ' i  ~ ( 2 . 5 )  

= qO. ( R . o . o T . ( ~ . O . O T . R T ) . q  =(~ , j ,  i, f =  1,--~. 

Thus, the stress vector ~.. constructed from the components of the tensor a (or the deviator S) 
in the basis ql is indifferent. 

We can similarly establish the indifference of the strain path, but we will do this by 
another method. We first of all note that the strain path constructed from the components of 
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the strain measure is invariant to rigid motion in any stationary basis in and does not 
change with the superposition of rigid motion. The strain tensor H associated with H. can 
be used to construct the strain path. 

THEOREM i. The strain path constructed using the components of the tensor H in the 
basis q~, coincides with the strain path determined by the components of the tensor H in the 
basis qi. Proof of this theorem reduces to establishment of the relation 

0 o 

q~.n.q~ = q~.ff.qj, i, ] = t, 3, (2 .6 )  

which follows immediately from (i.16) with allowance for (1.4). The direction of the tangent 
to the path constructed from the components of H in the basis q/0, is established from the 
components of the material derivative of H in the same basis. 

THEOREM 2, The direction of the tangent to the strain path constructed from the com- 

ponents qi'H'qi, coincides with the vector b z, found from the components of the Zaremby 
derivative ~z in the basis qi. With allowance for Theorem i and the above observation, 
proof of Theorem 2 reduces to derivation of the relation 

o o ~ I~Z qO.H.qj qi" .qj, i , j = l ,  3. 

In  f a c t ,  u s i n g  (1 .3 )  and ( 1 . 1 3 ) - ( 1 . 1 5 ) ,  we have  

q~176 qi .R . H . R . q j = q i .  ~h~h~k __(fl__ flV).i~_t_ ~ .  (fl__ fly) . q j = q i . ~ Z . q ~ .  

(2.7) 

Thus, the image of the loading process [13] determined from the components of a and H in the 
basis ql of the moving system M[I[2[ 3 is indifferent. In accordance with the definition of 
the tangent to the strain path, the elementary length of an arc of the latter 

Then the length of the arc %et 

The angle of convergence [7] 

ds = (bZ,bZ)l/2dt = (h z : hZ)l/2dt. (2.8) 

t t 

8= y (bZ'bZ) 1/2dT -~ ~ ( ~IZ: hZ)l/2dT. ( 2 . 9 )  

t o t o 

is found from the relation 

c o s O =  x ' ~  S:hZ - 
l ~ [ lbZl  - -  (S :S) 1/2 (~Z :~Z)l /2 " ( 2 . 1 0 )  

All~of the parameters of the curvature and twist of the strain path are also naturally 
determined for the path constructed in terms of the movable coordinate system M~I[2[ 3. 

3. Governing Relations. Of course, the proposed constitutive equations must satisfy the 
general requirements (postulates) established in the theory of governing relations [8, 15]. 
However, there are some examples of the construction of physical equations which satisfy all 
of the postulates but fail to offer a realistic description of elastoplastic strain processes 
(see [3], for example). Thus, here we have imposed limitations on the form of the constitu- 
tive equations subject to the above general postulates) and we introduce several additional 
requirements of a structural nature: 

a) in the case of small displacement gradients, the physical equations of the NTP coin- 
cide with the relations of special theories of plasticity formulated on the basis of the 
theory of elastoplastic processes [6, 7, 13]; 

b) the measures used for the stress and strain states and the rates of their change 
permit the normal expansion (in the form of the sum of spherical and deviatoric components) 
into parts responsible for the change in volume and form; 

c) the objective measures used for the stress and strain intensities are corotational, 
i.e. represent the relative rates of change in the stresses and strains determined by the 
same observer (moving or stationary); 

d) in the construction of the image of the loading proceeds in terms of the actual 
configuration, the movable coordinate system M~I~2~ ~ is chosen so that the motion of the 
system M~I~2~ 3 characterizes the quasirigid (nondeformational) displacement of the same set 
of three material fibers fixed in J~0. We note again that in the general case of motion of a 
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deformable medium, this displacement is not actually realized and is regarded only as a 
method of decomposing the motion. Here, after movement of the undeformed set of three fibers 
from the position it occupies in JiP0, to the position it occupies in $~t (which coincides 
with 7~f~I$~ 3 ) and after deformation, the fibers are no longer orthogonal to each other and 
are generally oriented at random relative to ~f~i~2~3 The components of the chosen strain 
measure, fixed at an arbitrary moment of time t by an observe, in the system Af~1~=~ 3 . and 
characterizing the change in the lengths of and angles between the fibers of the three-fiber 
set (during the entire loading process), give the image point of the strain path in the 
five-dimensional deviatoric (or isomorphous vector) space. It should be noted that require- 
ments "b" and "d" were used in Part 2 to introduce the image of the loading process. 

Here, we are examining governing relations of the rate type. For different cases of 
deformation (over paths with a break or with small or moderate curvature), we can write the 
same type of relations [I0, 16]: 

az = F~ : ~z  § BO § R, ( 3 . 1 )  

where F 1 is a tetravalent indifferent property tensor; e is the temperature; B and R are 
divalent indifferent tensors. The specific expressions of the tensors FI, B, and R are found 
in accordance with the type of strain path and are presented in [16]o For example, in the 
case of isothermal deformation over a path of small curvature, the tensor B is a zero tensor 
and 

t [O,(s)_O(s)'~/(~)e](Cii+Cm)++[Kl_.,(s)+.(s)~f](~)2]Ci; (3 .2 )  FI=T 
R = H (3.3) 

Here, @(s) is a universal function of the material; H'~) = dH/ds; C~C~, C~ . are fourth-rank 
isotropic tensors [9]; the superscripts o, Z, and ZZ denote the material derivative, the 

Zaremby derivative, and the double Zaremby derivative; ~zz = ~z~.~z ~_~z.~; K~ = Ke r1(N) 

(K is the compressive bulk modulus), H i (~z: 

It is not hard to see that the above governing relations satisfy the above-noted addi- 
tional requirements. To determine the validity of proposed physical equations, it will 
generally be necessary to conduct experimental studies of complex loading with large strains. 
Unfortunately, such studies are not yet being done. We thus turn to a sample problem involv- 
ing simple shear. 

4. Results of Solution of Sample Problem. We will concern ourselves mainly with models 
of quasielastic materials. One of the first models of this type was the relation proposed by 
Truesdell, Prager, and Green [15, 17, 18] for a hyperelastic material 

ffJ = H:D~ (4.1) 

where J is a derivative in the Jaumann-Noll sense; ~ is a fourth-rank property tensor with 
constant components. As was noted in several studies [3, i0, etc], the components of the 
stress tensor (in the basis of the system of reference) undergo oscillations in the solution 
of the problem of simple shear with the use of physical equation (4.1). Such behavior does 
not correspond to monotonic loading. On the basis of this, most investigators [3, 12, 19, 
etc.] have deemed use of the Jatumann derivative in the governing relations to be unacceptable. 
The following is proposed as an alternative relation: 

a z = H: D, (4.2) 

Results obtained for the shear problem using physical equation (4.2) are presented in 
Fig. i (here and below, the components of the stress tensor a are determined in the orthonor- 
malized Cartesian basis of the system of reference). It can be seen from the figure that the 
results of the solution are monotonic in character in this case. However, as the parameter t 
approaches infinity, the deformation process becomes equivalent to compression by smooth 
slabs in the direction of the x 2 axis and tension along the x I axis~ It should be expected 
that in this case ~z1-+oo~ ~2-+--oo, ~I~-+0 , which does not correspond to the solution based 
on (4.2). 

We note that relations of the form (4.1) and (4.2) do not meet the "c" requirement of 
corotation. Figure 2 gives analogous results obtained using the relations 
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a I = ~:HJ, a z = H:~z (4,3) 

satisfying this requirement. Here, the solutions coincide identically, which is due to the 
isotropy of the tensor H. It is evident from Fig. 2 that the functions an(t), a22(t) cor- 
respond qualitatively to those presented in Fig. i, but the difference in the behavior of 
a~(t) is quite significant. 

Here, the relation alz(t) found on the basis of (4.3) more closely reflects the actual 
deformation process in question. 

Figure 3 shows similar results for the elastoplastic model (small-curvature theory, with 
the physical relations having the form (3.1-3.3)). Figure 2 shows the character of the 
change in the components of the stress tensor for a quasielastie material. The strain path 
shown in Fig. 4, constructed from the components of the Hencky tensor in the basis qi, con- 
firms the validity of using small-curvature theory for the loading process being considered. 
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DETERMINATION OF THE DEPTH OF THE PLASTIC REGION INTHE 

PRESSURE OF A FLAT DIE ON A HALF-PLANE 

T. P. Pukhnacheva UDC 539.2 

Let a flat die of the length 2 be pressed into a rectilinear boundary without friction 
so that a pressure distribution q is created under the die. Such a problem was first examined 
by Prandtl with the assumption that the stresses were continuous everywhere except at the 
ends of the die and with the use of a constant yield condition (see [i] for example), 

Let a I and a z be the principal stresses in the plane (x, y). By means of 2p = ~I + az 
and 2r = ~I - az, any yield condition for an isotropic material can be written in the form 
'1" = f (p) .  

Using ~ to designate the angle between the first principal direction and the x axis, we 
express the components of the stress tensor through p, z, and ~: 

~ x = P + ~ C O S 2 * ,  ~y = p - - T c o s 2 %  (1) 
a~y = ~ sin 2 , .  

Having inserted the equilibrium equation into (I), we obtain the following system of 
equations : 

O(p + ~ cos 2, ) /Ox  4- O('c sin 2 , ) /@ = O, 

0(~ sin 2~)/Ox " cO(p - -  ~: cos 2~)/Oy = O. (2) 

We assume that l r'l < I. Then system (2) is hyperbolic. Two families of characteristic 
curves and relations along these curves can be written for the system: 

(cos 2~ -r- "c')dy = (sin 2 ,  ~- 1/ I - -  ('c')~)dx, 
D 

* + .i V 1 ~- (~,)2 d~ = r - -  const, 

Po 

(cos 2 ,  -~ "c')dg = (sin 2 ,  - -  ~ 1 - -  (T')'-r)dx, 

* - -  .i ~-(~,)22z d~ = s -  const. 
P0 

We w i l l  examine  t h e  s t r e s s  f i e l d  i n  t h e  p l a n e  o f  t h e  f l o w s  ( F i g .  l )  and  t h e  p l a n e  o f  t h e  
c h a r a c t e r i s t i c s .  The s i m p l e s t  s t r e s s  f i e l d  d e v e l o p s  i n  r e g i o n  ABAn: P0 = r (P0)  - q, r ~ 0. 
T h i s  r e g i o n  c o r r e s p o n d s  t o  t h e  o r i g i n  o f  t h e  c o o r d i n a t e s  i n  t h e  c h a r a c t e r i s t i c  p l a n e .  The 
r e g i o n  AllBA21 c o n t a i n s  a s i m p l e  c e n t e r e d  s - w a v e ,  w h i l e  r e g i o n  AAnAla a l s o  c o n t a i n s  a s i m p l e  
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